Research and Development of High Temperature Materials for Industry.pdf

Research and Development of High Temperature Materials for Industry

List of Contents.- 1. Advanced High Temperature Materials.- 2. Materials Potential.- 2.1. Alloys.- 2.1.1. High Temperature Steels for Power Plant R.D. Townsend, CERL Leatherhead.- 2.1.2. Developments in Heat-Resisting Alloys for Petrochemical Plant J.J.Jones, Lake&Elliot Paramount Ltd..- 2.1.3. High Temperature, Oxidation-Resisting FeCrAl Steels S.R. Keown, Consultant Metallurgist.- 2.1.4. Superalloys, base: nickel, cobalt, iron and chromium C.H. White, Inco Alloys Ltd.- 2.1.5 Oxide Dispersion Strengthened (ODS) Alloys C.H. White, IncoAlloysLtd..- 2.1.6. Refractory Metals and Alloys Reck, Metallwerk Plansee GmbH.- 2.1.7. Titanium S.F. Pugh, Consultant Metallurgist.- 2.1.8. The Platinum Group Metals S.F. Pugh, Consultant Metallurgist.- 2.1.9. Intermetallic Compounds for High Temperature Use P. Costa, ONERA.- 2.2. Coatings.- 2.2.1. Claddings and Co-extruded Tubes T. Flatley, C.W. Morris, CEGB Leeds.- Coatings, Metallic and Ceramic (Thermal Barrier) for Turbine ApplicationsR. Mevrel,ONERA.- 2.3. Composites.- 2.3.1. Metal matrix Composites R. Warren, Chalmers University.- 2.3.2. Ceramic matrix Composites R. Warren, Chalmers University.- 2.4. Ceramics.- 2.4.1. Engineering Ceramics and Pyrolytic Materials D.J. Godfrey, Admiralty Research Establishment.- 2.4.2. Refractories J.T. van Konijnenburg, HoogovensB.V..- 3. Materials Production.- 3.1. Alloys.- 3.1.1. Alloy Production R. Brunetaud, Consultant Metallurgist.- R. Brunetaud, Consultant Metallurgist.- High Temperature Materials S.F. Pugh, Consultant Metallurgist.- 3.2. Ceramics and Refractories.- 3.2.1. Ceramics and Pyrolytic Materials D.J. Godfrey, Admiralty Research Establisment.- 3.2.2. Powder Production for Structural Ceramics F. Cambier, A. Leriche, CRIBC.- 3.3. Composites.- 3.3.1. Metal matrix Composites R. Warren, Chalmers University.- 3.3.2. Ceramic matrix Composites R. Warren, Chalmers University.- 3.4. Joining.- 3.4.1. Joining of Metallic Materials T.G. Gooch, Welding Institute.- 3.4.2. Joining of Advanced Ceramics for High Temperature Applications KM. Ostyn, Research Centre of the Belgian Welding Institute S.D. Peteves, Joint Research Centre, Petten A.C. Vinckier, State University Ghent.- 4. Materials Constraints in the High Temperature Industrial Technologies.- 4.1. Energy Production and Conversion -Fossil Energy.- 4.1.1. The Combustion Technologies D.B. Meadowcroft, CERL Leatherhead.- 4.1.2. Steam Cycle Power Plant D.B. Meadowcroft, CERL Leatherhead.- 4.1.3. Coal Gasification Materials for Plant Construction D.M. Lloyd, British Coal Corporation.- 4.1.4. Fuel Cells K Joon, S.B. v.d. Molen, E.H.P. Cordfunke, Netherlands Energy Centre.- 4.1.5. Magneto-hydrodynamic Energy Conversion F. Negrini, University of Bologna.- 4.2. Materials Constraints in Petrochemical Plant F.J. Vaes, Dow Chemicals B.V..- 4.3. High Temperature Materials Problems in Fusion and Fission Power Generation, S.F. Pugh, Consultant Metallurgist.- 4.4. Engines.- 4.4.1. Aero Gas Turbines S. Newsam, Rolls Royce pic.- 4.4.2. Marine Gas Turbines J.F.G. Conde, Materials Consultant.- 4.4.3. Turbines for Motor Vehicles J.F.G. Conde, Materials Consultant.- 4.4.4. Reciprocating Engines -Diesel- Otto D.J. Godfrey, Admiralty Research Establishment.- 4.6. Materials used in the Processing of Super alloys J. Morlet, Imphy SA.- 4.7. Materials for Sensors to be used at High Temperature O. De Pous, Eniricerche Monterondo.- 4.8. Materials for Furnaces D. Brun, Stein Heurtey SA.- 5. Optimisation of Components.- 5.1. Testing MetrologyM.S. Loveday, National Physical Laboratory.- 5.2. Prior Inspection/NDE W.N. Reynolds, NDT Centre, AERE Harwell.- 5.3. Design of Materials for Components.- 5.3.1. Basic Principles for Modelling of Deformation and Rupture D.R. Hayhurst. Sheffield University.- 5.3.2. Life Prediction and Residual Life Assessment G.W. Greenwood. Sheffield University.- 5.3.3. New Approach to Materials Design. Calculated Phase Equilibria for Composition and Structural Control T.G. Chart. T.I. Barry. National Physical Laboratory.- 5.3.4. Design Concepts for Ceramic Materials J. Lamon. Battelle Institute.- 5.3.5. Structural Design Methods and Rules for Metallic ComponentsOperating at High Temperatures F. Schubert. Kemforschungsanlage J lich.- 6. Future Trends in High Temperature Technology and the Implications for Materials R&D.- 7. Conclusions.

Innovate with Emiri ... Emiri Energy Materials Industrial Research Initiative. Hervé Bernard. EA Deputy CEO. and EERA chair. “To offer or maintain sustainable ...

9401070083 ISBN
Englisch SPRACHE
Research and Development of High Temperature Materials for Industry.pdf


PC und Mac

Lesen Sie das eBook direkt nach dem Herunterladen über "Jetzt lesen" im Browser, oder mit der kostenlosen Lesesoftware Adobe Digital Editions.

iOS & Android

Für Tablets und Smartphones: Unsere Gratis tolino Lese-App

Andere eBook Reader

Laden Sie das eBook direkt auf dem Reader im herunter oder übertragen Sie es mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions.


Öffnen Sie das eBook nach der automatischen Synchronisation auf dem Reader oder übertragen Sie es manuell auf Ihr tolino Gerät mit der kostenlosen Software Adobe Digital Editions.

Aktuelle Bewertungen

Sofia Voigt

The 'Global and Chinese High Temperature Superconducting Material Industry, 2012-2022 Market Research Report' is a professional and in-depth study on the current state of the global High Temperature S

Matteo Müller

This book is a valuable reference tool for engineers who develop heat resistant materials, mechanical engineers who design and maintain high temperature equipment and plant, and research scientists and students who study high temperature corrosion and protection of materials. High Temperature Materials - Tenmat

Noel Schulze

High Temperature Materials - Advanced High …

Jason Lehmann

Global Technical Ceramics Market Size | Industry … Industry Insights. The global technical ceramics market size was valued at USD 56.70 billion in 2015 and is expected to witness significant growth of 10.2% over the next eight years. The market growth is owing to rising demand for electronic devices among consumers in Asia Pacific particularly China and India.

Jessica Kohmann

High Performance Materials | The Crosscutting Materials program works to accelerate the development of improved steels, superalloys, and other advanced alloys to address challenges of both the existing fleet and future power systems. Materials of interest include those that enable components and equipment to perform in the high-temperature, high-pressure, corrosive environments of an advanced energy system with specific …