Elements of the Mathematical Theory of Multi-Frequency Oscillations.pdf

Elements of the Mathematical Theory of Multi-Frequency Oscillations

Anatolii M. Samoilenko

1. Periodic and quasi-periodic functions.- 1.1. The function spaces $$C^r /left( {/mathcal{T}_m } /right)$$and $$H^r /left( {/mathcal{T}_m } /right)$$.- 1.2. Structure of the spaces $$H^r /left( {/mathcal{T}_m } /right)$$. Sobolev theorems.- 1.3. Main inequalities in $$C^r /left( /omega /right)$$.- 1.4. Quasi-periodic functions. The spaces $$H^r /left( /omega /right)$$.- 1.5. The spaces $$H^r /left( /omega /right)$$ and their structure.- 1.6. First integral of a quasi-periodic function.- 1.7. Spherical coordinates of a quasi-periodic vector function.- 1.8. The problem on a periodic basis in En.- 1.9. Logarithm of a matrix in $$C^l /left( {/mathcal{T}_m } /right)$$. Sibuja s theorem.- 1.10. G ing s inequality.- 2. Invariant sets and their stability.- 2.1. Preliminary notions and results.- 2.2. One-sided invariant sets and their properties.- 2.3. Locally invariant sets. Reduction principle.- 2.4. Behaviour of an invariant set under small perturbations of the system.- 2.5. Quasi-periodic motions and their closure.- 2.6. Invariance equations of a smooth manifold and the trajectory flow on it.- 2.7. Local coordinates in a neighbourhood of a toroidal manifold. Stability of an invariant torus.- 2.8. Recurrent motions and multi-frequency oscillations.- 3. Some problems of the linear theory.- 3.1. Introductory remarks and definitions.- 3.2. Adjoint system of equations. Necessary conditions for the existence of an invariant torus.- 3.3. Necessary conditions for the existence of an invariant torus of a linear system with arbitrary non-homogeneity in $$C/left( {/mathcal{T}_m } /right)$$.- 3.4. The Green s function. Sufficient conditions for the existence of an invariant torus.- 3.5. Conditions for the existence of an exponentially stable invariant torus.- 3.6. Uniqueness conditions for the Green s function and the properties of this function.- 3.7. Separatrix manifolds. Decomposition of a linear system.- 3.8. Sufficient conditions for exponential dichotomy of an invariant torus.- 3.9. Necessary conditions for an invariant torus to be exponentially dichotomous.- 3.10. Conditions for the $$C/left( {/mathcal{T}_m } /right)$$-block decomposability of an exponentially dichotomous system.- 3.11. On triangulation and the relation between the $$C/left( {/mathcal{T}_m } /right)$$)-block decomposability of a linear system and the problem of the extendability of an r-frame to a periodic basis in En.- 3.12. On smoothness of an exponentially stable invariant torus.- 3.13. Smoothness properties of Green s functions, the invariant torus and the decomposing transformation of an exponentially dichotomous system.- 3.14. Galerkin s method for the construction of an invariant torus.- 3.15. Proof of the main inequalities for the substantiation of Galerkin s method.- 4. Perturbation theory of an invariant torus of a non linear system.- 4.1. Introductory remarks. The linearization process.- 4.2. Main theorem.- 4.3. Exponential stability of an invariant torus and conditions for its preservation under small perturbations of the system.- 4.4. Theorem on exponential attraction of motions in a neighbourhood of an invariant torus of a system to its motions on the torus.- 4.5. Exponential dichotomy of invariant torus and conditions for its preservation under small perturbations of the system.- 4.6. An estimate of the smallness of a perturbation and the maximal smoothness of an invariant torus of a non-linear system.- 4.7. Galerkin s method for the construction of an invariant torus of a non-linear system of equations and its linear modification.- 4.8. Proof of Moser s lemma.- 4.9. Invariant tori of systems of differential equations with rapidly and slowly changing variables.- Author index.- Index of notation.

The department researchers have contributed greatly to the solution of the liquid-propellant LV pogo stability problem. A linear theory of liquid-propellant LV pogo stability has been developed, first of all by accounting for cavitation phenomena in the LPRE pumps in the mathematical models of the dynamics of the “LPRPS LV body” system

1.85 MB DATEIGRÖSSE
9401055572 ISBN
Englisch SPRACHE
Elements of the Mathematical Theory of Multi-Frequency Oscillations.pdf

Technik

PC und Mac

Lesen Sie das eBook direkt nach dem Herunterladen über "Jetzt lesen" im Browser, oder mit der kostenlosen Lesesoftware Adobe Digital Editions.

iOS & Android

Für Tablets und Smartphones: Unsere Gratis tolino Lese-App

Andere eBook Reader

Laden Sie das eBook direkt auf dem Reader im Hugendubel.de-Shop herunter oder übertragen Sie es mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions.

Reader

Öffnen Sie das eBook nach der automatischen Synchronisation auf dem Reader oder übertragen Sie es manuell auf Ihr tolino Gerät mit der kostenlosen Software Adobe Digital Editions.

Aktuelle Bewertungen

avatar
Sofia Voigt

Elements of the mathematical theory of multi-frequency oscillations / by A.M. Samoilenko ; [translated by Yuri Chapovsky]. QA 867.5 S2613 1991 Singular perturbations of differential operators : solvable Schrödinger type operators / S. Albeverio, P. Kurasov.

avatar
Matteo Müller

Anatoli Michailowitsch Samoilenko – Wikipedia Elements of the Mathematical Theory of Multi-Frequency Oscillations, Kluwer 1991 mit J. A. Mitropolski, D. I. Martinyuk: Systems of evolution equations with periodic and quasiperiodic coefficients., Kluwer 1993

avatar
Noel Schulze

Samoilenko A.M. Elements of the mathematical theory of multi-frequency oscillations: invariant tori. - Moscow: Nauka, 1987. Samoilenko A.M., Perestyuk N.A. ...

avatar
Jason Lehmann

A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. On partial stability theory of nonlinear dynamic …

avatar
Jessica Kohmann

Klappentext zu „Spectral Theory of Families of Self-Adjoint Operators “ 'Et moi, , si j'avait su comment en revenir, One service mathematics has rendered the human race. It has put common sense back je n'y serais point aile.' where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded n- sense'. Самойленко Анатолій Михайлович — Вікіпедія